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ABSTRACT

Traditional analyses of optical scintillation usually invoke the Rytov approximation and the
associated assumptions regarding weak phase perturbations throughout the propagation channel.
Associated with that approach is the prediction that the statistics of scintillation will be log-normal. This
report, which uses the Fresnel propagation function as a basis, challenges many of the standard
descriptions of far-field irradiance fluctuations. A key finding of this study is the importance of the ratio
between the transmitted beam diameter and the turbulence coherence diameter. Turbulence-induced beam
jitter is found to be a dominant effect when this radius is close to unity, and the relationship between
pointing error and scintillation is examined in detail. As a result of this work, models for the mean Strehl,
scintillation index, and signal-fade distributions have been developed. Included in this document are a set
of detailed comparisons between the new theoretical models and numerical results derived from a
beamwave propagation code developed by Lincoln Laboratory.
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1. INTRODUCTION

Scintillation effects due to electromagnetic wave propagation through an inhomogeneous medium
are generally treated as a weak perturbation of the vacuum solution to Maxwell's electromagnetic field
equations. When this approach is combined with a statistical description of turbulence-induced refractive
index fluctuations, one can accurately model the behavior of far-field irradiance fluctuations when the
path-integrated wavefront distortion is small compared to the optical wavelength. Although many
investigators have also applied this analytical approach to strong turbulence conditions, the results of this
study demonstrate that better descriptions of the scintillation phenomenon result when the propagation
expressions are modified to permit a wider range of validity.

The need for a nontraditional description of optical scintillation is immediately apparent to anyone
who has carefully studied beam images generated by numerical simulations or experiments in which laser
beams are propagated through an atmospheric channel. The compositional evolution of the short-exposure
beam profile is dramatic as the strength of the field perturbations increases, and therefore no single
description adequately characterizes the entire range of behavior. This report identifies three distinct
performance regimes and derives separate statistical models for each.

This study is primarily focused on the development of better link-budget models for free-space
optical communication systems, but the derived results are applicable to a wide range of propagation
scenarios. The statistical descriptions developed thus far only relate to uncorrelated path realizations.
Time-dependent behavior will be addressed in this next phase of this investigation.



2. THE RYTOV APPROXIMATION FOR WEAK PERTURBATIONS

To establish an historical perspective for the new work discussed in subsequent sections, it will be
useful to briefly review the standard assumptions and predictions that derive from the application of the
Rytov perturbation theory. The Rytov approximation is described in a variety of texts; the following
derivation is extracted from Goodman [1].

At any point in space the optical field, U, must satisfy Maxwell's equation

22

V2U -U=0, (2-1)

where co is the angular frequency, n is the refractive index, and c is the speed of light. For an
inhomogeneous medium, the refractive index can be divided into a constant term, no, and a perturbation,
n,, that will vary in space and time. The expression for the perturbed field, 0, is

o2 )2(U+U)=O (2-2)

where U and U, are the unperturbed and perturbation field components, respectively. For atmospheric
propagation, n can be set to unity without loss of generality. If n, is small compared to unity, then the
following expression will be valid

V 2U +k 2LU =-2k2 nlu , (2-3)

where k = &)/c = 2r/2 and 2 is the optical wavelength. For plane-wave propagation through frozen

turbulence, the solution to Eq. (2-3) can be expressed as a three-dimensional coherent integral over the
entire scattering volume

U1 ( I exp{ik r-i:'r [2k2 (F,)U()d3'(2-4)4 Ir -i F2-4

V

Goodman notes that the effective scattering angle due to refractive-index fluctuations is very small, in
which case the Fresnel approximation can be applied. The separation of the axial and radial components
in the free-space Green's function yields the following form for beam propagation along the positive z
axis
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] 'exp i k (z- z')4 +"X(
(k2xr2+(z- z'P)2

k()7 z-(z )')U()dxddz'. (2-5)

NXy V Z

The relationship given in Eq. (2-2) is referred to as the Born approximation, which assumes that the
net field value can be represented as the linear sum of the unperturbed field and a set of weak perturbation
components. An alternative approach, known as Rytov approximation, defines the complex phase,
V/ - X" + iq5, such that

U=exp{ }=exp{,'+ V/} , (2-6)

In this approximation the phase perturbation components are assumed to be additive. For weak
fluctuations

V/ I +U } U6 (2-7)

so that the volume integral can be written as

2 f eP)k(zz) (Ux) ( _ (F') c/x'dv'dlz'.
2;TU (F) JJ

A' y z'

(2-8)

The real part of this expression specifies the log-amplitude component of the field variations due to
inhomogeneities in the refractive-index. The Rytov approximation is more frequently used than the Born
approximation and is thought to be more accurate for strong turbulence conditions.

Statistical investigations of scintillation due to refractive index fluctuations in the atmosphere
usually begin with an expression similar to that given in Eq. (2-8) and proceed with an analysis based on
the spatial frequency properties of the perturbation parameter, nh. Analytical investigations of this type
date back to the work of Kolmogorov [2] and Tatarski [3], and have since been continued by a number of
investigators including Ishimaru [4], Strohbehn [5], Fried [6], and Yura [7]. The results of these
investigations are typically expressed in terms of complex multidimensional integrals, which are usually
evaluated numerically. A more recent technique based on Mellin transforms has been developed by
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Sasiela [8], which allows the solutions to many important problems to be represented in closed form. To
simplify the mathematics, most analytical calculations are limited to two propagation geometries-
irradiation from a point source or an infinite plane wave.

The computational approaches just described have been applied successfully to a wide variety of
practical problems, including the design of adaptive-optics correction systems for astronomical imaging
and link budget estimation for free-space optical communications. The primary characterization of the

atmospheric channel is the C2, profile, which quantifies the strength of the refractive index fluctuations.
For many system constructs the mean receiver irradiance and the irradiance variance can be related to the

2low-order moments of the C,,, profile, i.e.,

I.Pni, _ fy()ZnC2()d 2-9)
w

where L is the distance between the transmitter and receiver, and y describes the beam dimensions. The

standard result for the variance of X for point-source radiation propagating from ground to a receiver in

space at range L is

2 k7/6X0.563 aP5/6 (210)

and for an infinite plane wave traversing the same path

2 k7/6 L5/6
c07 2 0.563 k /6U0 L (2-11)

Based on the central limit theorem it is usually argued that both O5and X are Gaussian random variables, in
which case Eq. (2-7) specifies that the field amplitude statistics will be log-normal.

Despite the success of the Rytov theory and related mathematical approximations, there are many

interesting beam-propagation scenarios that cannot be accurately analyzed in this manner. The

relationship given in Eq. (2-11) is immediately suspect, since it predicts that ca2 will become infinite as

L -> cc . This result is inconsistent with simulations of large-diameter transmitters, which show that o-2

approaches a constant as the propagation range becomes large.

Transmission from apertures of finite dimension is known as beamwave propagation, and for many
geometries of interest the associated scintillation properties are not well characterized by relationships

derived for the point-source or infinite plane-wave cases. Furthermore, numerical simulations and field

experiments both demonstrate that the statistics of fading due to propagation through strong turbulence
are not log-normal. In short, many of the assumptions commonly applied to the design of systems subject
to strong channel fluctuations are inappropriate and may lead to serious errors in performance estimates.

5



3. THE THREE STAGES OF OPTICAL SCINTILLATION

The optical field relationships given in Eqs. (2-7) and (2-8) suggest a multiplicative process that
imposes a weak distortion onto a diffraction-limited beam profile. Numerical simulations (which are
described later in this document) verify this prediction when the integral of the C;2 profile over the

propagation path is small. A good measure of the absolute turbulence strength is the coherence diameter,
r0, defined by Fried [9]

L[ -3/5

'bj 0.423k2 f C2(z)dz (3-1)
0Q I

It can be shown that the relative impact of the atmosphere on the far-field quality of a beam transmitted
from an aperture of diameter D is directly related to the D/ro ratio. This quantity plays a primary role in
the characterization of scintillation behavior.

Charnotskii [10] was one of the first investigators to propose a segmented classification of
scintillation based on a multidimensional parameter space, and his article suggests that as many as I
distinct classes are needed to properly describe all aspects of this complex phenomenon. Charnotskii's
research is unique in that it concludes that a thorough analysis of scintillation cannot be based solely on a
single set of weak-turbulence approximations. One would hope, however, that it might be possible to
capture the essential aspects of this process in a somewhat simpler set of mathematical constructs.

The phenomenological approach proposed in this document segregates scintillation behavior into
three classes, and associates each class with a single observable-the D/ro ratio. This methodology

derives from a detailed analysis of vertical-path and horizontal-path numerical simulations performed at

Lincoln Laboratory. On a qualitative level these new results are consistent with the work of prior
investigators, and the predicted numerical values for very weak and very strong turbulence conditions

were correctly reproduced. (Contrary to the prediction that obtains from Eq. (2-11), U 2 achieves a

saturation value of 0.25 for severe channel conditions.) When o,. is plotted as a function of D/ib , a clear

trend is revealed. As shown in Figure 3-1, for a scenario in which the ro value is fixed, the log-amplitude
variance is constant when D/b) << I and approaches the saturation limit when D/r >> I . The transition

region occurs when D/r0 is in the range of I to 10. This behavior has been observed for a variety of

turbulence profiles and for both vertical and horizontal-path geometries.
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Figure 3-1. Estimates of o72 asa Jfnction of the normalizedfield perturbation strength fbr vertical path

propagation. These results were obtained /rom numerical simulations of beamwave projection through a

series of discrete phase screens from a ground-level transmitter to a receiver in geostationarv orbit. In
the small D/rO limit these data agree with the Rytov predictionjor point-source scintillation.

While plots similar to that shown in Figure 3-1 have frequently been published, little attention has

been paid to the physical processes that shape the scintillation curve beyond the region where the Rytov
approximation is applicable. A detailed examination of far-field beam images derived from numerical

simulations reveals clear distinctions between the profiles for small, intermediate, and large values of
D/ro ; these differences are illustrated by the examples shown in Figure 3-2. The short-exposure image

shown in the leftmost picture indicates the behavior when D/ro is small. In this case the long-exposure

beam width is approximately diffraction-limited, but individual realizations display a relatively weak
multiplicative noise component. This is the only region in which the Rytov approximation is strictly valid
and for which the distribution of intensity fluctuations is log-normal.
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D/ro <<I D/ro ;t 1 D/lo >> 1

Figure 3-2. Beam profile evolution as a function of the normalized field perturbation strength. These
images indicate three distinct physical mechanisms for irradiance fluctuations in the plane of the
receiver. The tilt-jitter effects and beam breakup shown in the second and third images are not accounted

Jbr by the Rytov theory.

When D/ro is of order unity, the strength of the log-normal fluctuations begins to diminish, and the

scale size of the noise peaks becomes comparable to the diffraction-limited beam diameter. However, tilt
jitter becomes more pronounced, and low spatial-frequency aberrations distort the short-exposure beam

shape. Both of these effects result in a dramatic increase in far-field irradiance fluctuations. Although
gross beam motion is not usually thought of as scintillation, the distinction is artificial since both
introduce a corruption of the on-target irradiance. The statistical properties for this case are not log-
normal and are strongly dependent on the quality of the track correction used in the transmitter.

Tilt fluctuations are associated with the appearance of the lowest spatial-frequency phase-distortion
components, which are the dominant distortion factor [11]. As the strength of the higher spatial-frequency
constituents becomes comparable to 2;T , the beam sidelobes increase in intensity until the mainlobe and

the sidelobes become indistinguishable. Full saturation occurs when the phase errors across the aperture
are uniformly distributed between -if and iT. Negative-exponential statistics are observed for these
conditions.

The statistical descriptions developed in the following sections are a direct product of observations
drawn from Figures 3-1 and 3-2. The intent of this effort is to develop a better understanding of the causes
and the effects of atmospheric turbulence beyond the range in which the Rytov approximation is valid.
The goal is to provide a set of mathematical constructs that can be used to predict system performance for

any propagation geometry and turbulence environment.
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4. A NEW PERSPECTIVE ON THE BEAMWAVE SCINTILLATION PROBLEM

The most important observation made in the previous section is that the Rytov approximation fails

for the scenarios of greatest concern to the designers of free-space optical systems that are intended to
function in a stressing turbulence environment. Even a cursory analysis of numerical results for moderate
to strong perturbations reveals serious discrepancies between predictions and measurements. To develop

improved performance models, the effects of tilt jitter and beam breakup must be explicitly incorporated.

In the investigation of this problem, it was soon realized that diffraction plays a key role in
beamwave scintillation. The location of the perturbation field relative to the Rayleigh range, where
diffractive beam spreading becomes important, strongly impacts the strength and statistical behavior of

signal fluctuations measured at the receiver plane. It is common to refer to field points that are within the
Rayleigh range, zR = D2 /,1, as being in the near field of the transmitter, and describe more distant points
as lying in the far field. For the case of beam propagation from a large transmitter from ground to space,
turbulence-induced distortions will be solely confined to the near field of the source. As the transmitter
diameter shrinks, the Rayleigh range moves closer to the source and the accumulated perturbations
migrate to the far field. In the first example, the fields in the receiver and transmitter planes form a simple
Fourier-conjugate pair. A quantitative description of the latter case is significantly more complex, and this

difference is central to the discussions that follow.

Although this analysis is intended to be as general as possible, three simplifying constraints will be
applied that are applicable to most system constructs of practical utility. The first is that the receiver

aperture is small compared to the size of the speckle features in the far-field beam and that it lies along

the nominal propagation path. This assumption enables scintillation analyses to be performed on a single
point within the plane of the receiver. The second constraint is that the receiver lies at the focus of the
transmitted beam. For most systems of practical interest, the average received irradiance is maximized
when the focus applied to the transmitted beam is equal to the receiver range; in addition, this geometry
also establishes an exact Fourier-transform relationship between the two optical planes. The third

assumption is that the transmitted beam is an infinite Gaussian characterized by the field radius, WO.
Although much of the turbulence literature assumes transmission from a unifon-nly-illuminated aperture

of diameter D, the beams from most transceivers are best described by a truncated-Gaussian shape. It will
be shown that relationships developed for uniformly-illuminated apertures can be easily converted to

Gaussian-beam expressions through the application of the scaling transformation, D = 23/2 W0 .

4.1 BEAMWAVE PROPAGATION RELATIONSHIPS FOR UNPERTURBED GAUSSIAN
BEAMS

The evolution of the beamwave profile with propagation range is shown graphically in Figure 4-1.
The spatial and temporal characteristics of irradiance fluctuations resulting from perturbations introduced
in the near- and far-field regions of the beam differ significantly, and it is necessary to develop a separate
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set of analytical tools for each region. The basic mathematical relationships that are later used to construct

statistical irradiance models are developed in this section.

Beamwave
Beam Profile GeometricalDiffraction Ba rfl

Beam Profile Beam Profile

wo

*- ZR

Transmitter Receiver
Plane Plane

Figure 4-1. Evolution of a focused-beam profile from transmitter to receiver planes. The shape of the

beam is governed by geometrical propagation in the near-field of the transmitter and bh diffractive
spreading in the far field. The transition between these two regions occurs at the Rayleigh range.

The composite beamwave profile shown in Figure 4-1 shows that the shape of the focused beam is
established by the geometrical propagation pattern in the transmitter's near-field region, but becomes

diffraction-limited in the far-field. A Gaussian beam of infinite extent remains Gaussian over the entire
range and is completely characterized by the range dependent radius, w(r) , and wavefront focal radius,

f(r). The following derivation borrows heavily from Goodman's discussion of Fresnel propagation
[12].

The expression for the optical field amplitude in the plane perpendicular to the propagation
direction derives from the Huygens-Fresnel principle

Ul(xl,-Vl)= J f h(XoYO;XlYl)UO(xoy°)dxOdy() (4-1)
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where U() is the complex field amplitude within the xy plane at range zo, and U1 is the amplitude at zj. The

propagation transfer function, h, is given by

h(xoyo;xjy) i k ) exp {i k J(x - x 0 )2 +(y,_ yo) 2 +(z7 - Zo )2 (4-2)

where k =24/1. For most problems of interest (z -zo) 3 >> , (x-x)2 +(Yi yo)2 ,in which
4max

case the Fresnel approximation is applicable

h(xo,yo;xl,,) , -kexpik (z- ) (-Xo2 y, _ 4-3)

~~'.~'2;Y ~ f(z - ZO) ep 2(z, z0 ) I 1 Y~j

An important property of the Fresnel approximation is that in the absence of field perturbations a
single propagation step from z() to z2 yields the same result as multiple steps within the same interval.

Consider the two-step process zo = zI => z2 described by the equation

U2 (x 2 )= fUo(xo)exp i2(z2_Zk ) (X2-X1)2 exp i2 (zzo) (XI dx, dxo

Observe that

a (x, -xo ) 2 +b (X2 ~~XI)2 (a+ b)FXI-a XO b X2 72 +a b (X2X) 2

L a + b a a+b

k k
where a -z) and b-2(z2 z)and note that the integral over x, can be performed using the

identity

f exp {ia• ( x -8)2 }dx=exp i V 2a}

-0C

This yields the result

______)_f__0_(_0) exp k X O) xU2 (x 2 )=expi k(z2 -zl)(
132(-o) -)
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With the exception of the leading phase constant, this is equivalent to the propagation expression for the
single-step propagation z0 -; z2.

When the propagation range is extended further such that z - zo >> /7 (x2 + v2 te

Fraunhofer approximation provides an accurate estimate of the transformed field

-z ekp ___ ýepi k (z,-Z 2+Y1X 0 x1 + YO' Y') 4.4xoyo;x,,y,) - 2(-0 ex p i k Z - 70

Note that aside from phase terms that are independent of x) and YO, this expression is equivalent to a
Fourier transform. Goodman shows that this approximation is also valid for short propagation distances if
the transmitted beam is focused at z1 . It is also worth noting that along the boresight path the field
expression for Fraunhofer propagation is proportional to the two-dimensional integral of U,

2Uz((ZlOZ O)f I goxoYo)dxody0  (4-5)

which is a useful relationship for numerical calculations.

The field transformation concepts just presented provide a basis for a discussion of the effects of
turbulence-induced phase perturbations. An important element of the following analysis is the
demarcation between the near field and far field of the transmitted beam and the placement of the
perturbation with respect to that transition point. The beamwave problem can be significantly simplified
by restricting the discussion to focused Gaussian beams. Investigations by Andrews and Phillips have also
concentrated on Gaussian-beam behavior [13].

For virtually all cases of interest, optimal performance is achieved when the geometrical focal
distance and the range to the receiver are identical. The field at the transmitter will be defined as follows

U0 (ro) = A0 exp{-ikrff/2fo} exp{-ro'/w} , (4-6)

where ivo is the field radius andf) is the focal distance. Assuming Fresnel propagation from z0=0 to z2, the
Field expression at range zis

14



zI 2 z, 0 2z, ZI
k k 21 AO Fk I _ 1k ro r9  kl=-i-expjikz }p { efxp _ _- r0 exp -e ro 0 ro r drO

Z, 2z, 0 2 z, s0 KI ZI

(4-7)

The integral relationship fx exp {_a 2/2} J (xy) d 1 exp { 2 /2a}

0 a

2 (1 1 .
can be applied to Eq. (4-7), where x=ro, y - kri/zi, and a= 2 ik The result is given in

the following expression

2 2z, +ik 2 (0-z 1/fo)U, (r 1 )=-i k Vw exp{ikz} 2 2 WO 2 40S4z• +k• I (I - Z,/so)•

[2 F W4u ~ ~ (4-8)
x exp -i z + k2 WO)2 _ 1 ri2 exp .. . . . . .2z 4z] +k WO zif 4z2 +k2 WO (1z 0f)1

This field description has the same structure as the original beam, in that both the amplitude and phase
profiles are Gaussian. The beam radius at range z1 is

4z+k2 w4 (1-zI/fo)2
I = 4 k2 WO 2(4-9)

where the first term is the diffractive beam-spreading factor and the second describes the beam
dimensions for geometrical propagation. The wavefront is defined by the focal distancer -1

A= k WO (4-10)fl= 1 WO

Note that the beam radius at range z1 is minimized when foz = .

15



It will be useful to define a range parameter that specifies the onset of beam diffraction. According
to Eq. (4-9), the beam radius will increase by a factor of ',5 when the propagation range is

zR - 1 y1 (4-Il)2 2f0J

To compare this result with derivations developed for uniformly-illuminated apertures of diameter, D, it is
useful to establish a relationship between D and w0. When the Airy irradiance pattern derived from the
Fourier transformation of a circular aperture is compared with the far-field profile of a diffraction-limited
Gaussian beam, the main-lobe structures are found to be closely matched when

D = 23/2 Vw0 . (4-12)

Therefore, for a uniformly illuminated circular aperture

R D2 1+ 2 (4-13)

For ./ = oo this result closely approximates the standard definition, 7/R = D2/A .

Well beyond the Rayleigh range the beam assumes the characteristics of a spherical wave

originating from a point-source transmitter, as illustrated earlier in Figure 4-1. In the near field, where
z] << zR , the approximate expressions for w1,f1 , and the multiplicative constant, A], are

"wI ýwo (I 1 /]ji5) , .f =fo -z, , and A, O- (l_ (4-14)

whereas in the far field of the transmitter

2I l k JIt-z 1  ,and A, k w2 (4-15)k wo2z

Once the far-field range limit has been reached, the beam radius and wavefront focus both scale linearly
with propagation distance.
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4.2 RECEIVER-PLANE FIELD EFFECTS DUE TO NEAR-FIELD PHASE PERTURBATIONS

For a few propagation geometries, such as vertical link between a large ground-based telescope and
a high-altitude satellite, the accumulated channel distortions all effectively lie in the plane of the
transmitter. In this case, the phase errors for a single realization can be added linearly and treated as a

single distortion screen defined by the function, (b(xo,yo). The transmitter-plane representation of a

perturbed Gaussian beam focused on a receiver at range z = L is

0o(x0oYO) ='40 exp ýi 0 (xoYo)} exp{-_ik ( x2+ YO)/2Lýexp ý-(x2 + Yo/ 110 (-6+ y )/0 (4-16)

The inclusion of the focus term places the receiver in the Fourier transfornm plane of the transmitter, in
which case the Fraunhofer approximation can be applied to obtain the field at range L

UL (XL,YL k-;eT p{iL(x +L y/2L}

x 0 Jexp io(xoYo) exp- x 2 w2±)1w2exp ik (OLYOYL)dx0 dvo.
f-.C f 0" o W

(4-17)

(Complex constants having unity amplitude have been eliminated from this expression to simplify the
notation.) With the variable substitutions, a =kxo/L and ,B=kyo/L , the previous equation can be

written in the form of a Fourier transform

UOL(XL,yL)= k40 exp{ik(x2 +YL)/2L}

x F{exp{iV(La/k,L/3/k)}exp{-(L22+ L2a9 2)/k2 w0}}.

which explicitly shows the range and wavelength dependence of the radial scaling. Note that the leading
phase term is equivalent to that for a point source located in the plane of the transmitter, and in the
absence of phase errors the second term is a simple Gaussian amplitude profile as described previously in

Eq. (4-8). It should also be emphasized that since the outgoing wavefront has been tailored to optimize

received power, all phase distortions inserted in the near-field result in a degradation of the far-field
signal.

Recall that this derivation is based on the assumption that all channel effects are confined to the
plane of the transmitter. This constraint can be relaxed somewhat by allowing the field perturbations to be
placed further downrange, but within the Rayleigh-range limit. If the screen is located at range, z, with

respect to the transmission aperture, then
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k A+ exp i2 k0 (X 2
UL (XL,YL) = TL ex~kx~J/L}(-

x F exp{HA(7 L a/k,;vL/3k) I exp{ý-(L2 a 2 + L2 ,6 l)/k 2 14,2}

where 7 represents the radial scaling relationship between the unperturbed beam at the transmitter and the

unperturbed beam at range z. Thus, from Eq. (4-9)

2
w(z) z 4__

. +-- ý + (4-20)

WOWO

Since the beam is focused on the receiver, it initially shrinks in dimension but increases in size as the
Rayleigh range is approached. The assumptions of the near-Field approximation are clearly invalid when
diffraction effects start to dominate and / becomes significantly larger than 1. On the other hand, one
could treat the previous expression as the sum of a geometrical-propagation component, which describes
a beam that is focused to a point at the receiver and a spherical-wave component that emanates from the

transmitter. The first of these two terms yields

7

L/1--- , (4-21)L

which has appeared in a number of prior publications in which scintillation effects for focused-beam

geometries have been investigated [8]. An accurate treatment of the spherical-wave component appears to
require a very different set of assumptions and approximations, as described in the following section.

4.3 RECEIVER-PLANE FIELD EFFECTS DUE TO FAR-FIELD PHASE PERTURBATIONS

When the diameter of the transmitter becomes small enough to push most of the channel effects

beyond the Rayleigh range, the propagation geometry begins to approach the point-source limit. In this
case the perturbation and receiver planes cannot be treated as a Fourier conjugate pair, and their
relationship must instead be defined through the Fresnel transformation. In general, signal fluctuations
due to far-field perturbations are less severe since the relative separation between the two planes is
smaller. A second important difference between the near-field and far-field geometries is that in the latter
case the insertion of a phase screen will result in localized regions of signal enhancement due to Iocus
contributions that counteract diffractive wavefront expansion (see Figure 4-2); when the channel effects

are sufficiently weak, the mean irradiance will be identical to the diffraction-limited value. Both of these
factors make it easier to apply Rytov analysis to far-field distortions.
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Figure 4-2. Illustration of the effect of placing a focusing element in the jar-field of a point source. A
point along the propagation axis will experience an increase or decrease in the optical irradiance,

depending on the sign of the tbcusing element. Note that phase distortions that result in an on-axis
irradiance enhancement only occur in the far field of the transmitter.

A mathematical description of Fraunhofer propagation from a source at z.=0, through an
intermediate plane at z1 , and then to a second optical plane at Z2 was provided in Section 4.1. To
simplify the notation and maintain consistency with the previous discussion, in this section the receiver's
range will be represented as L, and the range to the intermediate perturbation plane will be given as z.

If the assumption is made that z >> zR , a Gaussian beam that encounters the perturbation field, q0,
can be described as follows

O(x,y) = A exp{iob(x,y)} exp{ik(x2 +V2)/2z}exp{-(x2 +y2)/w2} , (4-22)

2z2
2z k vi,0 A0

and as specified in Eq. (4-15) wiz- , and A z 0 (4-23)
k wo 2z
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Fresnel propagation to L yields

U1,(xL,vL ) 2 Z(L ) f ) ffexp ik 2(LXL -X ) d+,_ x• A v (4-24)
2z (L 20(L -- z)

This expression can be rearranged to incorporate the focus term in the Fresnel kernel, so that

k - k(p 2+ 2 )/2 LýUL(XL,YL)- ;T (L -z) exp L

0C Jexp ik L( L_)(zL LY)2} 
(4-25)

where U'(x,y)=Aexp{iO(x,y)}exp{-(x2 + V2)/w2} (4-26)

is the product of the Gaussian amplitude and the perturbation field at z. The field transfer function can be

expressed as

h'(x,y;xL, YL) 2 k eL xp XL L exp ik L (zx2IL -) -+(-7 "/

2j7z(L-z) L 2L 72 ( L - )

(4-27)

2In the limit that the propagation distance L - z is small compared to k w , the third term of the previous

expression can be replaced by a pair of delta functions by applying the identity

c5(x) -lim exp(-ax2 )/J-a
a->O

thus yielding the result

L 2 L xp 2k-x W LL z L

To first order, the field at L is simply a replica of U, which has been scaled along the radial axes by the

factor L/z
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CIL(xL,yL)F -[ exp{ik(xL+y')/2 LIU zXL,ZYL . (4-29)
L L L L

This solution represents the trivial case, where the beam propagation distance beyond the phase screen is
too short to substantially modify the receiver-plane irradiance profile.

As the separation distance between z and L increases, the delta functions that appear in the previous
expression must be replaced with a more accurate approximation. As illustrated in Figure 4-3, the

integrals of both sin(ax2) and cos(ax2) display an abrupt, and approximately linear, transition

centered at x = 0 . The derivatives of both functions can therefore be replaced by the rectangle function,

FI(2a/l- x), where the normalization is given by the integral

00 GO

exp ia x2+y2)}dxdy=ji
-ce. -- •2

The rectangle function establishes the linear dimensions of a characteristic integration region

S z(L-z) (4-30)

kL

This results in the replacement of the delta functions with a two-dimensional average of U'(x,V)
centered at the point {zxL/L,zYL/L}, i.e.,

UL(XL,YL) A -- exp{ik(x, + V2)/2L}

112 112 Z e1} { -Xz)2( _)21 Ad.(4-31)X J f expie LXL-X'L YL-y exp 2- 1 L XL + YL

1/2 _f 2 f(L XL 21  2L'

At the nominal boresight location, the expression is further simplified

Az t/2 e12

0, (0,0) 2 L f I expi(xy)expy )/w2}dxdy (4-32)
L1/2 -g/2

and if it is assumed that the physical dimensions of the beam at z are much larger than i
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A -/2 </2

Lg(O,O) A2 - f exp{Hi(x,y)}dxdy (4-33)
ý2 L _/2 -/2

For the statistical analysis developed in the next section, it will be convenient to replace t with the
circular diameter

d ý8z 1 (z 2 -Z)
71 kz

or equivalently the Gaussian radius

S= 2 de z, (z2  -z 1 )
k z 2

The physical interpretation of this result is that the scintillation experienced by a point in the
receiver plane is only sensitive to far-field channel distortions that lie along the propagation axis and are
within a radius defined by wj. However, as the range to the perturbation plane approaches the near-field
region, this simple analytical description must be modified to account for plane-wave beam propagation
within the transmitter radius, w0 . As discussed below, these factors significantly reduce the impact of
near-field phase fluctuations on the far-field contribution to the net scintillation.
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Figure 4-3. Comparison of the integrals ofcos(x2) and sin (x2) with the integral of t/e rectangle finction.
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4.4 NUMERICAL SIMULATION TOOLS

The discussion of scintillation statistics provided in the next section derives from the analytical
analysis presented earlier in this section, but is also heavily dependent on the results of numerical

simulations of beamwave propagation performed at Lincoln Laboratory. The current version of the code,
known as POPS, is a descendent of the three-dimensional time-dependent program, MOLLY, which was
written at Lincoln Laboratory in the late 1980's to study turbulence and thermal blooming effects. Both
programs incorporate subroutines to generate random Kolmogorov phase screens [14] and a means to

propagate from one screen to the next using a two-dimensional Fresnel transformation [12]. As the beam

propagates from screen to screen, the Talanov scale transformation [15] is imposed to maintain a constant
ratio between the beam size and the dimensions of the field discretization grid. An arbitrary number of

phase screens can be created to simulate the desired C,2 profile, and each screen can be moved

perpendicular to the beam in accordance with the wind velocity profile for time-dependent simulations.
Statistical behavior is typically characterized by running 100,000 independent realizations of the
propagation channel. POPS is a state-of-the-art C-based code with a web-browser interface, which
currently functions on a 16-node Xeon processor cluster.

For statistical investigations, the output of the POPS code is generally configured to record the
irradiance at a small number of grid points within the receiver plane. However, to obtain a better

understanding of the physical processes that drive beam scintillation, it is often useful to study selected
images of the entire profile. The evolution of the dominant phenomenological mechanisms that drive far-

field scintillation are clearly illustrated by the beam images shown in the next section. In support of this
investigation, an extensive set of simulations have been performed for the vertical propagation geometry
to a receiver at 40 Mm and horizontal propagation to a receiver at 10 km. The tilt-removed results that are
described in the next section were obtained by measuring the irradiance for each realization at the grid

point located at the center of mass of the far-field beam profile.
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5. IRRADIANCE STATISTICS AT THE RECEIVER-PLANE BORESIGHT

In this section separate scintillation index expressions will be developed for each of the three beam-
propagation regimes defined previously; specifically, wo/ro << 1, wo/lr ] I, and wo/ro >> 1 . It is only

in the first of these cases, where the geometry approaches the point-source limit, that far-field channel
effects tend to dominate scintillation behavior.

The parameter terminology introduced in the previous section will be continued in this discussion,
including the use of the Gaussian beam radius w0 to characterize the dimensions of the transmitted beam.
This analysis begins with the case that is best characterized by traditional statistical descriptions based on
the Rytov approximation.

5.1 SCINTILLATION INDEX FOR w 0 /r0 << 1: WEAK FAR-FIELD TURBULENCE

The propagation relationships developed in Section 4.3 demonstrate that when the transmitted beam

diameter is very small, the phase perturbation and the receiver planes both lie in the far field of the
transmitter. In this limit, the detected irradiance fluctuations due to a perturbation field at range z are only
influenced by an illuminated region of radius

z(L-z) (5-1)
k-L

which is generally much smaller than the physical dimensions of the diffraction-limited beam. To first

order, the net impact of phase distortions within this region can be modeled as a thin lens that either
enhances or counteracts diffractive beam spreading. At the receiver plane, this effect produces a weak
multiplicative modulation of the diffraction-limited beam profile, as quantified earlier in Eq. (4-33).

The beam image and profile examples given in Figure 5-1 show little evidence of either pointing
jitter or time-averaged shape distortions. The primary feature illustrated in these pictures is a high spatial-
frequency speckle pattern that imposes relatively shallow fades. In this environment, the assumptions
associated with the Rytov approximation are valid, and numerical simulations show that the on-axis
irradiance distribution is approximately log-normal with a mean Strehl that is close to unity.
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Figure 5-1. Far-field beam image (leftJigure) and horizontal-axis profile (right figure) fbr w0 /ti) = 0.01

The Huyhagel-Valley turbulence profile was used in this simulation of' vertical propagation, Which

resulted in an r) value of 19 cm at 1.55 mm. The propagation distance is 40 Mm, and the linear dimension

of the image fields is 50 kim. The long-exposure beam profile is approximately diffraction-limited.

Estimates of the scintillation index for the point-source limit follow directly from the work of a

number of investigators in the field of adaptive optics [16]. Following Sasiela's derivation [8], the
focused-beam scintillation index for Kolmogorov turbulence would be expressed as follows

L c2(L )

02 =0.829 k 2 C2(z) [,c-11/3 sin2 !z(LZ) d dz (5-2)0o 2kL"

where W is the spatial frequency vector. The sin 2 [.] term that appears in this expression represents the

filter function for a spherical aperture, which captures the effect of the far-field integration region, w, ,

defined in Eq. (5-1). For a point source, the evaluation of the integral over the /C vector gives

2 k7/6 =2.25/6 5/6

kr 2.25 k Jf2Q (z) z L dz (5-3)
0

Several authors define the propagation parameter, = z/L , and express this equation as follows

26



L

,= 2.25 k 6 fc•Q (z) (L -z)5/6 /6 dz . (5-4)

0

The previous result can be extended to include transmitters of finite dimension by appropriately
modifying the argument of the integral in Eq. (5-2). The approach employed here is similar to that
developed by Sasiela to evaluate the magnitude of scintillation for extended sources and receivers. The
effects of an extended source of radius, ws , situated at range z are described by the filter function

F(K)L J, w- ) (5-5)

so that Eq. (5-2) can be rewritten as

k 20.829k 21/3 s _2__[ - z).] 2J 2 K ) d d
S C,2 (Z) fKic- sin 2  [J K( VZ2 (5-6)

0

When the ratio, k w2/z, is large, the integration over Kcan be approximated by

2( L 73

o1Y z 1.53 f f (z)z2 , w-/ 3 V .- (5-7)

0 -

The transition between Eqs. (5-3) and (5-7) can be accomplished by postulating a range-dependent source
radius of the form

l 1+0.719 L z (5-8)
w (L-z) kwO

which is proportional to fz- beyond the Rayleigh range. The final result can be expressed in the form of
Eq. (5-4), but with the following modification of the propagation parameter

= +1.39 L - z ý k wg (5-9)

Note that with this version of the y parameter, the scintillation index approaches zero monotonically as
w0 becomes large. It must be emphasized, however, that this prediction assumes that all perturbation
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effects are confined to the far-field region of the transmitter. This relationship is similar to an expression
derived by Sasiela for beamwave propagation [8]. An alternative derivation of the scintillation index for

this case is given in the Appendix.

For future studies of time-dependent behavior it is perhaps of interest to briefly address the
characteristic feature dimensions of the speckle pattern illustrated in Figure 5-1. An examination of
sample profiles for a range of w0 values reveals that the speckle dimensions are relatively insensitive to

the size of the transmitted beam, so that the number of speckles within the diffraction-limited far-field

profile is inversely proportional to w. This result is supported by a calculation of the coherence diameter

measured in the plane of the receiver for small-beam illumination. Using the definition for ygiven above,
the characteristic angular dimension of the speckle features is predicted to be

ro = 0.423k 2 LC, (z) 2 5/3 r 1.39rL W -- d/ _3/5 (5-10)

L 0

For small values of w0 this result is independent of the transmitted beam diameter, and the estimates

derived from this expression are found to be in good agreement with profile realizations obtained from
numerical simulations.

Figure 5-2 shows a plot of scintillation index values derived from the POPS code for an uplink

geometry through a Hufnagel-Valley turbulence profile and horizontal-path propagation over a 10 km
computed - propagationpath for C,2 = 1.39x10-6 m . In both cases, the r0 value was computed for focused-beam

from 0 to L, as described in Eq. (3-1)

ro L f 21( )( L _ z< J/3 dz] 3/5

The dashed lines included in this figure indicate the scintillation index predicted for the small Vto)/ro limit

using the propagation parameter expression given in Eq. (5-9). The model accurately describes the data
until Wo/ro approaches unity.

All of the results presented in this section are consistent with traditional analyses based on the first-

order Rytov approximation. In the next two sections, it will be shown that alternative methodologies are
required when Wo/r 0 becomes large.

28



101 i . . .I

vertical geometry
X = 1.55 pm

x6
I L = 40x106 m ** *

r =19cm A A
10 A A .

Z A
0

P 10"1
Z -ASA

SA S Uncorrected Beam

r) .4• A Tilt-Corrected Beam
- -A- ....- Far-Field Model

10-2 .. .. .

10.2 10.1 100 101 102

horizontal geometry
X = 1.55 pm

x L= lOkm

C 2= 1.39x1016 m3100 n A 2
Zo r° 46.1 cm

r 0o0
A

S10-1 A

A."". - - A 0 Uncorrected Beam
U) ,% A Tilt-Corrected Beam

--A .-- Far-Field Model

1 0 -2 A , -,, I .. . . . . .

10.2 10-1 100 101 102

w/r0 0

Figure 5-2. Comparison of'simulation results (red and blue data points) with the model/fbr turbulence

concentrated in the far-field of the transmitter (blue clashed line). The upper figure represents an uplink

geometry and the lower is horizontal propagation to 10 kmi.
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5.2 SCINTILLATION INDEX FOR w0 /ro 0 1: MODERATE NEAR-FIELD TURBULENCE

In many respects, the moderate turbulence case is the most interesting and least understood of the
three scenarios treated in this report. Numerical simulations performed at Lincoln Laboratory show
significant discrepancies between measured statistical behavior and the predictions based on log-normal
models. A distinguishing characteristic of the irradiance distributions derived from large ensembles of
independent channel realizations is an extended power-law tail in the low-signal region of the probability
density function. The impact of this discrepancy is that the log-normal models grossly underestimate the
likelihood of deep signal fades. Inspections of beam images at the receiver-plane disclose a consistent
pattern; for moderate levels of uncorrected turbulence, beam jitter is the dominant effect.

The examples shown in Figure 5-3 provide some insight into the mechanisms that govern beam
statistics when the wo/ro ratio is of order unity. The far-field profile is generally characterized by a

single main lobe that is somewhat larger than a diffraction-limited beam, which becomes more distorted
as wo/r 0 increases. In this regime, however, irradiance fluctuations at the receiver's boresight are driven

primarily by beam motion if tilt correction is not implemented. Note that the small speckle features that
were prominent in Figure 5- [ are not found in this image.
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Figure 5-3. Far-field beam image (left figure) and horizontal-axis profile (right figure) hiar w /r1 -1.

The Hufnagel- Valley turbulence profile was used in this simulation of vertical propagation, which
resulted in an r) value of'l 9 cm at 1. 55 mm. The propagation distance is 40 Mm, and the linear dimension

of the image field is 1 kin.
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Within the adaptive-optics community, calculations of the far-field Strehl are usually derived from
estimates of the accumulated phase errors over the entire propagation path. Since the engagement
geometries typically involve targets that are well outside of the atmosphere, this approach is equivalent to
collapsing all of the channel perturbations into a single phase screen within the near field of the
transmitter. For Kolmogorov turbulence, Noll has shown that the phase variance due to atmospheric tilt
jitter is nearly an order of magnitude larger than the combined contributions of the higher-order Zernike
modes [11]. A scintillation analysis based solely on beam jitter provides significant insight into the
underlying physical mechanisms that dominate receiver fluctuations when w0 Z 1- .

A rough estimate of fluctuation statistics due to turbulence-induced tilt can be made by assuming
that the far-field beam profile and the tilt-jitter distribution are both described by Gaussian functions.
Using p and Oto represent the radial and vectorial angles with respect to boresight, the normalized beam
profile at range L can be written as

I(p) z exp -2 (5-12)

where WL is the far-field beam radius; the distribution of the beam displacement angle would be

Poll (p)= fJp 1 iI(p,0) p dO 2 exp - ,2 (5-13)
0

where a, is the single-axis jitter radius. The tilt distribution can be converted to an on-axis Strehl

distribution by combining the last two expressions

p(S) S - - , (5-14)

(vvL/L) 2

where M I - (5-15)

Similar relationships have been previously published by Fried and Titterton [17,18]. Simulation results
for uncorrected turbulence support this model, as discussed in Section 6.
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An estimate of the power-law parameter, m, is obtainable given knowledge of wL and cr, . The first
parameter follows from Eq. (4-9)

2L
WL = k-w_ (5-16)k wO

and the second derives from a calculation of the Zernike tilt cormponent of turbulence developed by
Sasiela [8]

2 5.09 (5-17)
k 2 r5 / 3 1/3

ro Wo

which yields the result

~__ -5/3
Wn: 0. 196 fw (5-18)

\ro

The scintillation index obtains from the moments of Eq. (5-14)

I

I'k 11 k p (I)dI W nk (5-19)0 ~ n+k

so that c(/= I)2- (5-20)<I>2 ,,,(,m+ 2)

Note that this predicts that rn will be proportional to ( wo/r 0 )'0/3 when the ratio is small and (wv0/ri )5/3

when it is large, which is in qualitative agreement with prior estimates [19,20].

Unfortunately, the analytical approach just described provides little guidance with regard to the
scintillation properties of a tilt-corrected transmitter. For that case, one would expect that irradiance
fluctuations will be primarily driven by the changing dimensions of the beam's main lobe and variations
in the combined strength of the secondary lobes. On the other hand, Eq. (5-20) does suggest that the
scintillation index should be roughly proportional to the transmitter-plane phase variance, which
according to Noll's estimates are all proportional to the 5/3 power of the Wo/ro ratio [1I]
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total phase variance: o 1.03 (D2F0)'I' = 5.83 0)5/3 (5-21)
1.03 (D/r 3 )5/3 -223)w/0 ) 1

tilt-removed phase variance: 0 0.134 (D/r)5/ = 0.758 (w 0 /r 0 )5/3 (5-22)

Following this reasoning, one might expect the functional forms for the uncorrected and tilt-corrected

scintillation index to be similar, but with leading constants that differ by about an order of magnitude.

In Figure 5-4, the scintillation index results from the POPS code that were introduced previously

are compared with models of the form a/ = a (wo/ro)h within the transition region between the point-

source and large-aperture limits. As before, the coherence diameter is computed for focused beam

propagation from 0 to L, as defined in Eq. (3-1)

F L 3/5

r0 = 0.423 k 2 (i -z/L)51/3 C2 (z) dz focused beam .

In the regime where near-field phase perturbation dominate the shape of the far-field beam, the
scintillation index function displays a strong power-law behavior. A least-square fit to the uncorrected
turbulence data yields the result

L

u- • 1.30(wo/r 0 )5 /3 =0.550 k2 wo/3 f(1- z/L)/ 3 C, (z) dz , (5-23)
0

which is consistent with predictions based on Eq. (5-20). The shape of the tilt-removed scintillation index

is similar, but a 7/3 power-law exponent provides a better fit to the data than the 5/3 exponent used in the
last expression

I2]ig •0.078(wo/ro)7/3 =0.0234 k'4/5 v7/ 3 r(1-z/L)5/ C,2(z)dz . (5-24)

These results are judged to be highly significant, in that the same set of expressions have been
successfully applied to both an uplink and a horizontal-path geometry for which the C,2, profile
descriptions are very different. Additional simulation runs are planned to assess the range of applicability

of these two relationships.
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5.3 SCINTILLATION INDEX FOR w0 /r0 >> 1: SATURATION DUE TO STRONG NEAR-
FIELD TURBULENCE

In the limit of far-field beam saturation, the irradiance profile is characterized by multiple lobes of
roughly equal intensity separated by deep nulls. The angular dimensions of both the bright and dim
regions are of the order of Ilk w0 . Two representative images are shown in Figure 5-5.

0.03 i . . . . . , . . , . ,

LLI

z

0 0.02

LLI

, 0.01

0.00

-400.0 -200.0 0.0 200.0 400.0

RADIAL DISPLACEMENT (m)

Figure 5-5. Far-field beam image (lefi figure) and horizontal-axis profile (right figure) for w 0 /10 = 5.

The Hujhagel-Valley turbulence profile was used in this simulation Qf vertical propagation, which

resulted in an ro value of 19 cm? at 1.55 mm. The propagation distance is 40 Mm, and the linear dimension

of the image fields is 1 kmi. The average dimension of the individual speckles is approximately diff-action-

limited.

Superficially, this picture bears a resemblance to the beam profile for the small-beam case shown in
Figure 5-1, but the physical processes involved are very different. Recall that for the point-source limit,
the long-exposure beam width is essentially diffraction-limited, and the superimposed modulation pattern
is characterized by relatively shallow spatial features having an angular extent that is small compared to

/w0) . In the saturation limit, the size of the long-exposure profile is of the order of 2/r 0 , and each of the
speckle features is essentially an independent diffraction-limited beam with random intensity and offset
angle. Since the superposition of the ensemble of beams is coherent, the null regions between the peaks
tend to be very deep.
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Although the physical structure of this chaotic behavior seems very complex, the statistical
descriptions of the fields in both the transmitter and receiver planes are surprisingly simple. An important
result of the numerical simulations performed as part of this investigation is the discovery that far-field
irradiance saturation is strongly correlated with saturation of phase errors in the near Field of the
transmitter. If the optical phase at each point in the transmitter plane is described by the residual, 9,
within the range ±_+ such that 8 9 + n 2/T, saturation occurs when the distribution of 9 becomes
uniform

P('9)-2 . :- 9 . (5-25)

This condition is clearly at odds with the Rytov approximation, which assumes that the magnitude of 9 is
small compared to rand that its distribution is Gaussian.

One way to model the far-field effects of the phase distribution given in the previous expression is
to divide the transmitted beam into an ensemble of N uncorrelated sources. It is reasonable to expect that

the characteristic spatial dimension of each source will be of the order of 10, so that N cc (wo/r 0 )2 . If

each discrete source is described by the phase, 9i , in the Fourier transform plane, the on-axis Strehl is the

phasor sum [21]

S N 5226
S~ =- Z exp{iA} 0i(5-26)

If the distribution of the random variable, 9,, is uniform, the distribution of S is specified by the negative
exponential function

p(S)=Nexp{-NS} , (5-27)

which is confirmed by the numerical simulations. The first two moments of this model and the associated
scintillation index are summarized in the following expressions:

2 1 2 -2
5o N2 and o-- -1 (5-28)

While this scintillation index derived from this model is not sensitive to the magnitude of N (as long as N
is large), an estimate of this number is required to compute the mean Strehl ratio. The earlier prediction

that N c(wo/ro)2 is discussed in Section 5.5, which provides an overview of the Strehl models

investigated in this study.
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5.4 COMBINING THE SCINTILLATION INDEX MODELS

Arguments have been presented in this section to support the concept that beamwave scintillation

can be divided into at least three distinct regions of behavior-the small-aperture geometry in which
phase perturbations are concentrated in the far-field of the transmitter, the w0 v r0 scenario for which

phase perturbations are concentrated in the near-field of the transmitter, and saturated scintillation due to
strong perturbations in the near-field of the transmitter. The second case has been subdivided into

uncorrected and tilt-corrected (figure) turbulence; the latter case being the more desirable configuration
and the one more likely to be implemented in a practical system. Since beam-jitter correction is never

perfect, these two examples provide upper and lower limits on system performance.

The scintillation index models that have been developed thus far can be summarized as follows:

,fir-field e@jfcts that are accurately modeled by the Rytov approximation.

2.25k 7/ 6 fZ5/ 6 (l-z/L) 5 / 6 1+1.39(]Z/L) k w,'- 7 / 6  21 r/2]I/ - Q, (z) dz (5-29)

-0 l

near-field effects driven by tilt and figure distortions.

k

Ub IF = 0.55 k2 wj/ 3 f(l-z/L)5" 3 C (z)dz (5-30)

0

L 7/5
L2] = 0.0234 k14/ 5 w7/3 (I -z/L) 5/ 3 C,2(z)dz , (5-31)1NF ,'igWO 0c

and saturation due to near-field perturbations.:

2 ] = I . (5-32)
/ SA T"

The following heuristic expressions combine these relationships in such a way that a smooth transition
between each of the regions is accomplished

IO/2] = 0712 ] 2F,+ [C"2 ]2 F

1 +exp{-3rO/wo} [U/2 ]NF (5-3)
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[2 ~ 1FF NH~F,Jig
0' 'fg( (5-34)

[U~jj + lexp{-3r0 /w0 } I) I/ N,p fig 5-4

Recall that r0 is defined for the focused-beam geometry

L ]-3/'

r0 =r0.423k2 f(l-z/L) 5 /3 C,(z)dz]
0

The exponential term in the denominators of Eqs. (5-33) and (5-34) introduces a small amount of
overshoot at the initiation of saturation, which is consistently observed in the results of the numerical
simulations.

It has been suggested by some authors that systems designed to operate near the minimum of the
scintillation index curve provide optimal performance. Since channel conditions can be highly variable,
this strategy may not be practical, but it is worth noting that this design point can be computed from the

2composite 0-7 expressions given above

L

{Z' (I- z/L 1 /3 C27z) dz

uncorrected turbulence minimum: w4 v 2.78 k-2 0 (5-35)
fLI-7L5/3 C, (z, d
0

L

J z2 (1- 7/L )-13 -, (Z) ci:

tilt-corrected turbulence minimum: 14/3 z 65.4 k-14/ 5 0 ( (5-36)

f I- z/L) C", (Z) iJ

A comparison of the composite scintillation index models derived in this section and simulation
results obtained from Lincoln Laboratory's POPS code are shown in Figure 5-6. The agreement between
the models and data is very good, and as noted before, the same pair of expressions has been applied to
both the uplink and horizontal-path propagation geometries.
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Figure 5-6. Comparison of simulation results (red and blue data points) with the composite scintillation

index models (dashed lines). The upper figure represents an uplink geometrv and the lower is horizontal

propagation to 10 km.
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5.5 STREHL RATIO MODELS

Investigations of scintillation often fail to include any discussion of the average Strehl ratio, which
is surprising in thst accurate knowledge of this quantity is essential for any system application where the
optical source is limited by size, weight, or electrical power constraints. This section provides Strehl
approximations for uncorrected and tilt-corrected turbulence; both relationships are shown to be highly
reliable over a wide range of channel conditions.

The extended Mardchal approximation, which relates the Strehl to the transmitter-plane phase
variance, is used extensively by the adaptive-optics community

(S) ýexp cr- . (5-37)

To estimate the value of , the Zernike-component estimates given in Eqs. (5-21) and (5-22) are

typically referenced. While this approach is usually adequate when the phase variance is small, alternative

representations have been developed that are accurate for a wider range of 070 values. A notable example

is one published by Andrews and Phillips [[3]

(S) [ + 5.56(Wo/ro T](5-38)

A number of authors, including Yura [7], have drawn a distinction between the short-exposure tilt-
included and short-exposure tilt-removed turbulence coherence diameter. An understanding of this
distinction is very important for systems that incorporate high-bandwidth closed-loop beam tracking. In
the scintillation index plots shown earlier, it was demonstrated that tilt effects become a dominant concern
when wo/r 0 is of order unity. It is not surprising, therefore, that differences between the uncorrected and

tilt-corrected Strehl ratios would become significant in this region. The following relationship, which is a
modified version of Eq. (5-38), eliminates the tilt component of the Zemike phase variance until
saturation is achieved

(S)J 1 + S.S6- 4.84 (/ /0ro)5/3 6 (5-39)
I + 0.04 (wo/rO I

Comparisons of these models with results obtained from the POPS code are shown in Figure 5-7. These
last two relationships, in conjunction with the expressions for the scintillation index given previously in
Eqs. (5-33) and (5-34), provide a highly accurate means of estimating the low-order statistical moments
of the receiver-plane irradiance for a wide range of propagation conditions.
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Figure 5-7. Comparison of simulation results (red and blue data points') with the Strehl ratio models

(dashed lines). The upper figure represents an uplink geometry and the lower is horizontal propagation to

10 kin.
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6. RECEIVER-PLANE IRRADIANCE DISTRIBUTION MODELS

For many system constructs, the estimates of the mean Strehl and scintillation index developed in
the last section are adequate to provide a first-order estimate system performance. However, some
applications, including free-space optical communications, require a more detailed knowledge of the
irradiance statistics at the plane of the receiver. In this section, distribution models are developed for the
three sets of conditions discussed earlier, i.e., w0/r 0 << I , v0/t-) zI , and wo/r 0 >> I . The complexity of

the mathematics parallels that of the last section in that the models for the large and small aperture limits
have relatively simple descriptions, whereas the intermediate case is much more difficult to accurately
represent.

A successful scintillation model must satisfy several constraints, in addition to the obvious
requirement for accuracy. Mathematical simplicity is a primary concern, since the distribution function is
likely to become a building block in a high-level model of overall system perfor-nance. It is also
important to be able to associate the free parameters of the model with measurable properties of the

channel, such as the C,2 profile. Statistical models that lack these properties are of little use in

engineering design studies.

Before proceeding, it should be noted that much of the literature relating to this subject assumes
that log-normal distribution is appropriate for almost all propagation geometries. The work of Andrews et
al. [22] is a rare example of an alternative statistical description that accurately describes scintillation for
a wide range of propagation geometries. The three-parameter formulation proposed by Andrews is known
as the gamma-gamma model, which can be described as the product of a power-law function and the
K-Bessel function

P (S) - (/j~l/ r Ka )/-I 8ý Fai/(S1F)} (6-1)

The a and 83 parameters can be related to the strength of large- and small-scale phase perturbations,
respectively. Although the models developed in this section have a somewhat different structure, they
share many of the essential properties of the gamma-gamma function.

6.1 DISTRIBUTION MODEL FOR w0 /r0 << 1: WEAK FAR-FIELD TURBULENCE

Recall from Section 2 that the Rytov approximation assumes a multiplicative field perturbation of
the form

U, =exp{% +i} , (6-2)
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which indicates that irradiance fluctuations derive from the real part of the argument, X. Citing the central
limit theorem, it can be argued that both X" and , are Gaussian random variables, in which case the
associated Strehl distribution will be log-normal

1 sexp { n(S)- Jn(S))]2} (6-3)

Since this approximation is generally only applicable when the mean Strehl is close to unity, its shape is
specified primarily by the scintillation index, c-2. The relationship between o-2 and the turbulence profile

in the small-aperture limit was specified earlier in Eq. (5-4).

A representative set of comparisons between simulation results and the log-normal model is shown
in Figure 6-1 for a case where the beam diameter is small compared to the coherence diameter

2(w)/r0 = 0.0744). The shape of the model functions is solely determined by the value of oCF, which is

essentially identical for the uncorrected and tilt-corrected measurements in this example.

6.2 DISTRIBUTION MODEL FOR wo/ro t 1: MODERATE NEAR-FIELD TURBULENCE

This case is the most difficult of the three to model due to the complex phenomenology in the

transition region between the point-source and large-beam limits. For uncorrected turbulence, tilt-jitter
becomes a dominant effect, and beam-breakup strongly influences the received signal fluctuations in
systems that incorporate closed-loop track correction. For both of these system architectures, the shape of
the irradiance distribution is found to be very different from the log-normal function that derives from the

weak-turbulence approximation.

The essential constituent of the tilt-dominated distribution is the power-law model, which was

introduced in Eq. (5-14). Unfortunately, this model does not adequately capture irradiance behavior near

the distribution mean, because it does not include the effects of high spatial-frequency phase fluctuations

in the transmitter plane. The approach taken in this section parallels the design of most adaptive-optics

phase compensation systems in that the tilt and figure (tilt-removed phase) components of the near-field

distortion are addressed separately.
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Figure 6-1. Comparison of uplink simulation results for wo/r 0  0.0744 (black data points,) with the log-

normal distribution model (red line). The upper figure represents the tilt-corrected turbulence case and

the lower is the uncorrected case.
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The analytical treatment developed in this section relies heavily on a variation of the Nakagami-m
distribution that is frequently used to characterize RF signal fading due to multipath [23,24]. The more
familiar form of this expression describes the statistics of the field amplitude, but when written in terms of
the optical irradiance, the following relationship is obtained

p (S)L-F(M) K)SS) exp -m S (6-4)

This representation, which is a variation of the gamma distribution [25], includes a power-law function
that is dominant when S is small and an exponential term that defines the shape of the curve near the
distribution mean. However, it is not possible to separately adjust the properties of these two functional
components because both are constrained by the parameter, m.

A three-parameter model version of the Nakagami model was developed as part of this
investigation. The goal was to retain the simplicity of the model, while introducing a third parameter that
allows the shapes of the curves near the mean and the low-Strehl tail to be independently controlled. The
derivation begins with the assumption that Eq. (5-14) can be generalized as follows{ M 0 S S ~ - 0 ý ýS

p:(S) SO (6-5)

0 -elsewhere

where So • 1 is the peak Strehl achievable when tracking errors are perfectly corrected. If the tilt-
removed Strehl parameter is treated as a time-varying random variable, then Eq. (6-5) can be written as
the marginal distribution

p(S)= fp(S;So)p(So)dSo =mS'"' fSo' P(So) dSo
S S

(6-6)

K)~ LP J(so) CSO
The approximate form of Eq. (6-6) is valid if the standard deviation, o0, of the variable So is small

compared to its mean. This results in a representation that is the product of distinct tilt and figure
components.

In the previous section, it was demonstrated that weak far-field perturbations yield scintillation
statistics that are accurately described by a log-normal distribution. However, simulations show that as the
perturbations in the near field become stronger the statistics of the tilt-removed Strehl more closely
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resemble a simple Gaussian. For a Gaussian distribution, the integral indicated in the previous expression

is equivalent to the complementary error function

fp(So)so - I SO-(So) 
(-7)

s2

Unfortunately, the error function is difficult to manipulate analytically, so it would be desirable to

substitute a more tractable expression having comparable properties near the distribution mean. From a

Taylor's series expansion centered on ýSo), it can be shown that the complementary error function

closely resembles the exponential expression

I erfc{SO-So z exp -{ n (2)K } where 8-ln(2) (SO) (6-8)

This is equivalent to replacing the Gaussian distribution with a form of the Weibull distribution [25],

specifically

I___ (So 0 -(s0 ))2  0 6n2, 0 ~ F{
1 exp 2 nmSO 0 p- In (2) - (6-)1; 070 2cro (So----- ( So) ex(-9

The observations outlined above motivated the formulation of the following three-parameter
scintillation model, which is referred to in this report as the modified Nakagami (or mod-N) distribution

p(S)C=m/ )S - exp - c S (6-10)

S(M/ /9) (S) (S)' (S

The constant C f((m +l)/1) has been defined to simplify the notation. Note that this result is

P (m//3i)

equivalent to Eq. (6-4) when ,8 = 1, but that non-unity values of /3 provide a means to independently

control the characteristics of the tilt-removed component of the expression. The moments of this function

have a simple analytical form

Ik'& =- ii (6-1l)
Il T-F(r/,8) C

so the scintillation index can be expressed as
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2 F ((m + 2)/#) F(m//3) _ (6-12)
F ((m + )/,)2

The integral of the probability density is the incomplete gamma function

P(S) fp(S')s' cis (6-13)

0

Although the proposed model and its associated moments have a relatively simple mathematical structure,

a strategy for computing the model parameters m and P is not immediately obvious. The following steps

outline a straightforward process for developing estimates of both parameters given knowledge of the

scintillation indices for uncorrected and tilt-corrected turbulence.

If one accepts the premise that the effects of the figure component of near-field phase errors can be

modeled as a Weibull distribution, then the following result is derived

Pufg ()= rOI/g) T(l1,8) SO 0  1 exp _ T(11f8) S 0  (6-14)
(So) SO (SO) P -(so)

Note that this equation does not include the power-law parameter, n7. Therefore, the scintillation index for

the figure component is

L 2 ] _ -(1+216) -11/6 (6-15)

whee l/ aprxiaion F(I+ 1/,8) 2
where the approximation given in the second relationship is accurate when fi > . This step establishes

the value of.ft An estimate of the power-law parameter, m, derives from Eq. (6-12)

2 F((mn+2)//13)F(m//)3)_ M1,1/6 (6-16)
1, 

-W((m +/ )(-6)2

where the approximate form provides an acceptable estimate when m/11 < I . If required, the accuracy of

the estimates for the two shape parameters can be improved by inverting Eqs. (6-15) and (6-16)

numerically.

The following three figures illustrate the evolution of the tilt-corrected and uncorrected irradiance

distribution functions for increasing values of w'o/'b . All simulations incorporate the Hufnagel-Valley

C,2 profile and vertical propagation. The log-normal model is included for comparison.
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Figure 6-2. Comparison of uplink simulation results for wo/ro 0.187 (black data points) with the log-

normal distribution model (ied line). The upper figure represents the tilt-corrected turbulence case and

the lower is the uncorrected case.
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Figure 6-4. Comparison of uplink simulation results for wo I/r 0 . 930 (black data points) with the log-

normal distribution model (red line). The upper figure represents the tilt-corrected turbulence case and
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The previous examples demonstrate that the modified Nakagami model provides a very good fit to
the uncorrected turbulence cases, but is less successful in matching the shapes of the distributions for tilt-
corrected turbulence when Wo/tro is small. In the latter case, the log-non-ral distribution is clearly

superior, presumably because the relative contribution of far-field turbulence is significant. A method for
combining the log-normal and modified Nakagmi functions is described in Section 6.4.

6.3 DISTRIBUTION MODEL FOR wo/r 0 >> 1: SATURATION DUE TO STRONG NEAR-
FIELD TURBULENCE

In the discussions relating to saturated scintillation presented in Section 5, it was noted that this
condition appears to be associated with near-field distortions that are strong enough to create a unitorm
distribution of phase errors within the range of +±-. In this limit, the field in the transmitter plane can be
modeled as an ensemble of N independent emitters, where N z 1/(S). The resulting distribution is the
single-parameter negative-exponential function

Pexp -(-) (6-17)

This is a special case of the Weibull distribution given in Eq. (6-14) for which the shape parameter, ,B, is
equal to 1, and is also a special case of the modified Nakagami function with in =/ I . A distinguishing
characteristic of negative exponential distribution is that the function approaches a constant for small
values of S.

The scintillation index for this distribution is unity, and the shape of the curve is entirely
determined by the mean Strehl, (S). In the saturation limit, the mean Strehl can be estimated from Eq.
(5-38)

(S) 0.125 (wo/r0)- 2 , (6-18)

which indicates that the number of equivalent incoherent emitters is proportional to the number of
coherence-diameter regions within the profile of the transmitted beam.

A representative example of the irradiance distribution for saturated scintillation is given in Figure
6-5. The shapes of the curves for tilt-corrected and uncorrected turbulence are nearly identical and are
solely determined by the value of the mean Strehl. It is interesting to note, however, that the uncorrected-
turbulence plots in both Figure 6-4 and 6-5 show evidence of a slightly-negative power law exponent (i.e.,
m < I ). This condition appears to coincide with the region of overshoot in the scintillation index function
shown in Figure 5-6 and may be the result of beam tilt fluctuations that exceed the short-exposure beam
radius.

52



102 .

C/ vertical geometry101 ;•= 1.55 pm •l

L =40xl 0 6 m1L

ro=19 cm -00

M <S> = 0.0296

<~ 100

0
iL 0 Tilt-Corrected Beam

- •Expcmentlal Model

10.1 .

104 10-3 10-2 10-1 100

103 -.. 1

vertical geometry
1.55 pm

10240x1

z 0
WU <S 0.00952

I- 101

o 100
cc * Uncorrected Beam

- Exponential Model

1 0 -1 , , I . . . ., I . . . . . . ,..I . . .. . • • .. . . . . . .

10-4 10-3 10.2 101 100

STREHL

Figure 6-5. Comparison of uplink simulation results for wo/r0 = 3.72 (black data points) with the

negative-exponential distribution model (red line). The upper figure represents the tilt-corrected

turbulence case and the lower is the uncorrected case.
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6.4 COMBINING THE IRRADIANCE DISTRIBUTION MODELS

The statistical models discussed in the last two sections are appropriate for disturbances confined
primarily to the near-field of the transmitter, and they all represent variations of the three-parameter
function that has been referred to in this report as the modified Nakagami distribution. Far-field phase
perturbations, on the other hand, result in signal distributions that closely resemble a two-parameter log-
normal function. A formalism that achieves a smooth transition between these two dissimilar
representations is presented in this section.

A review of the tilt-corrected simulation data that appears in Figures 6-2 and 6-3 provide a good
starting point for this discussion. In the first example, the data are closely matched to the log-normal
function, whereas in the second case the simulation results in the tail of the distribution fall between the
estimates provided by the near- and far-field scintillation models. In both cases, the modified Nakagami
distribution overestimates the likelihood of a deep fade, although it could be argued that this discrepancy
is typically not important when the scintillation index is small. However, for communication systems
designed to operate near the link margin, a higher degree of prediction accuracy may be needed.

The approach proposed for combining the near- and far-field scintillation models derives from the
discussion of the composite scintillation index provided in Section 5.5. The following expression
represents a weighted average of the two distributions

2 E (]+[~ PA/(S(/ P NF: (S
pFF = , (6-19)

1 fIFF+ /-2 NF

where the values of the weights are specified by the scintillation indices as defined in Eqs. (5-29) through
(5-32). The far- and near-field functions, PF and Pvr , refer to the log-normal and modified Nakagami
distributions defined in Eqs. (6-3) and (6-10). The linear addition indicated in the last expression
preserves both the statistical mean and variance of the two component distributions.

The effect of the composite distribution model is most significant in the region where the far-field
and near-field contributions are comparable. In Figure 6-6, new plots of the tilt-removed data shown
earlier in Figures 6-2 and 6-3 are given along with the composite model shown in the dashed green curve.
In the former case, the composite model essentially replicates the log-normal model since far-field effects
dominate, but in the second example it provides a significantly better match to the simulation output than
either of the component distribution functions.
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7. CONCLUSIONS

Numerical simulations of beamwave propagation frequently reveal significant discrepancies
between the scintillation properties of the computational output and predictions based on the Rytov
theory. This problem has frequently been encountered in studies of engagement geometries of practical
interest, including many that are relevant to free-space optical communications. System designers are now
requesting models that more accurately predict channel behavior, but which are also simple enough to
allow their integration into high-level engineering software. The relationships developed in this report
represent an attempt to satisfy both of those requirements.

Analytical investigations of weak scintillation have generally been restricted to two cases that can
be solved through the use of the Rytov approximation-propagation of an infinite plane wave and
illumination from a point source. Neither of these geometries is an adequate representation of a
transceiver link that transmits a beam of finite dimensions, and which imparts a focus that is matched to
the receiver range. Both of these propagation constraints are fundamental to most systems of practical
interest, and both have been applied in this analysis.

One of the primary goals of this study is a much better understanding of the physical processes that
drive receiver-plane signal fluctuations. Two parameters are found to be of particular importance. The
first is the ratio between the outgoing beam diameter and the turbulence coherence diameter; this result is
not unexpected in that this ratio appears frequently in publications dealing with turbulence effects and
adaptive optics. The second factor, which is somewhat more subtle, is the relationship between locations
of the individual perturbation planes and the Rayleigh range of the transmitted beam. This study has
identified a fundamental difference between the effects of phase distortions introduced in the near field of
the transmitter (within the Rayleigh range) and the far field (beyond the Rayleigh range). In general, near-
field perturbations are not well characterized by predictions based on the Rytov approximation. This
observation is particularly important for applications such as uplink communications, which exhibit a
strong near-field component.

This report provides a practical approach to predicting irradiance statistics given knowledge of the
beam size, propagation geometry, and turbulence profile. Although the relationships derived have thus far
only been validated for the cases of vertical uplink and horizontal propagation, it is believed that they can
be accurately applied to a much wider range of engagement geometries.
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APPENDIX

The following derivation represents an alternative approach to the estimation of the scintillation
index due to far-field perturbations and is intended to support the result developed in Section 5. 1. As in
the previous discussion, it is assumed that the primary effect of phase distortions close to the receiver
plane is to modify the local curvature of the propagating wavefront. In essence, the physical model is that
the beam propagates through a succession of concave and convex lenses before being intercepted by the
receiver.

To obtain a quantitative description of the irradiance changes that result from the focus-driven
model proposed above, the focus perturbation term, e, will first be defined such that the effective field
curvature in the z, plane is

1 1
(A-I)

,1  Z1

The perturbed beam diameter in the z2 plane further along the propagation path is

2 2+ (22_Z )=d2 +C__ (22-2 , (A-2)
fl, Zfzi

and the modified boresight irradiance is

if = L2 2 12 2 [1-2(z 2 - z)/z 2 ] (A-3)

[2 +d (z 2 -z)/d 2 z]2 [ - z)

At this point the assumption will be made that s is a zero-mean Gaussian random variable with

variance o-,. If the value of this parameter can be related to the turbulence strength at z,, then the

statistics of 12 are easily derived from Equation (A-3). Noll's article [II] shows that within a circular
aperture of diameter d, the focus component of the phase error is

d 5/3

]focu = 0.023 - =0.0097d5 /3 k2 C,'(z) Az_ (A-4)
0 r0

where Az is the phase-screen depth. For a wavefront characterized by the curvature radius,fj the piston
and tilt-removed phase variance within the circle is [8]

59



0o- 2 focus k 2d 4(A5

0 768f 2  (A-5)

In this context the parameter, y = 1/f 2 , can be regarded as a statistical quantity with expectation value
'768 o_2-

76 2 (A-6)
k2 d4 Li focus

[f x = 1If is a zero-mean Gaussian variable, then the distribution fory is the gamma function

P (Y) Y 1/2,/xop -1 2/
-v exp,

which has the mean value, (y)= . This provides the key relationship between the variance of I/f

and the focus component of the phase variance given in Equation (A-6). When this result is applied to the
perturbation term in Equation (A-I) and combined with the expression for the characteristic radius
developed in Section 4.3

di = 23/2 we = !Z 1 ( 2 1  (A-7)

kz2

it can be seen that

k- 8 k2 d K4 focus ' 7.4521 d,- C, (z,) Az k 0.66ck Q A-. (A-8)

The final step of the derivation incorporates the relationship between I, and c given in Equation (A-3) to
develop an expression for the receiver-plane intensity variance

5/6
2 k2.64k7/6 75/6 Z2-Z Q(z)A

z 2

The variance for the entire propagation path derives from the assumption that the phase perturbations are
additive and independent

60



l2 =2.64k 7/ 6 { z 5 / 6 z 2 - Z 2C,(z)dz (A-10)
0 -

The leading constant in this result differs from the standard expression given in Equation (5-3) by about
20%, but this qualitative agreement tends to support the argument that the primary effect of far-field
perturbations is embodied in a model that describes far-field perturbations as a series of thin lenses.
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